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Summary

When an energetic electron is incident on a solid surface, a considerable

number of secondary electrons may be produced; this phenomenon is called
secondary electron emission. The yield for most metals is less than one, but may be

as large as 8 or more for insulators. Hence SEE is an important feature of plasma-
solid surface interactions, and may have considerable effects on the behavior of

components such as solar cells in low earth orbit. The purpose of this report is to

provide a convenient scheme for including realistic SEE behavior in numerical
simulations of plasma-suurface interactions.

Previous Monte Carlo simulations provide a data base for properties of

secondary electron emission (SEE) from insulators and metals. Incident primary
electrons are considered at energies up to 1200 eV. The behavior of secondary

electrons is characterized by (1) yield vs. primary energy Ep, (2) distribution vs.

secondary energy E s and (3) distribution vs. angle of emission e.

For primary energies above 50 eV the SEE yield curve can be conveniently

parameterized by a Haffner formula. Special attention is paid in this report to the low

energy range Ep up to 50 eV, where the number and energy of secondary electrons

is limited by the finite band gap of the insulator. There is also a considerable

probability for elastic backscattering or reflection of the primary electron in this

energy range, and separate yield curves are given for reflected primary electrons.

The energy distribution of secondary electrons is described by an empirical

formula with average energy about 8.0 eV. (A MaxwelI-Boltz mann distribuftion,

however, does not provide agood ilL) The angular distribution of secondaries is

slightly more peaked in the forward direction than the customary cos I) distribution.

The results of the MC simulations--yield and distribution curves--are

conveniently represented by means of empirical formulas and appropriate parameters.
Procedures and algorithms are described for using these results to find the SEE yield,

and then to choose the energy and angle of emergence of each secondary electron.

These procedures can readily be incorporated into numerical simulations of plasma-

solid surface interactions in low earth orbit.



]. Introduction to Secondary Electron Emission

A. Description of SEE Processes and Behavior

When electrically charged particles with sufficient kinetic energy are incident on
the surface of a solid material, the material emits electrons. This paper will only con-

sider electrons as the incident charged particle. In keeping with the current literature

these incident electrons will be called "primary electrons," and the electrons from the

material that are excited by the primary electron will be called "secondary electrons."

The secondary electron yield 5 is the ratio of external secondary electron current to pri-

mary electron current. The yield may also be regarded as the average number of ex-

ternal secondary electrons per primary electron.

Different types of materials exhibit characteristically different yields. The basic

source of the difference in yield between the types of materials is the electron energy

band structure. A diagram showing the energy bands for a metal and for an insulator

is shown below.
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Fig. 1 Energy level diagrams for metals and for insulators.
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The single headed arrows represent the amount of energy an internal electron
may acquire by interacting with the primary electron or other internal secondary elec-
trons. As indicated in the diagram, if the internal secondary electron has sufficient en-

ergy to climb to the vacuum level, it may be able to leave the material and become an
external secondary electron. It is important to keep in mind, though, that the internal
secondary electron must also be traveling toward the surface of the material if it is to
become an external secondary. On its way to the surface, an internal secondary may
interact with many other internal electrons. With each interaction the secondary elec-
tron will lose energy and/or suffer a change in direction. It is the number of these inter-
actions and the distance to the vacuum level that ultimately determines whether or not
an electron will become an external secondary electron.

In metals the work function • is the energy that all electrons must be able to

overcome to become external secondary electrons. Just below the work function is the

top of the conduction band EF. The conduction band is partially filled, with occupied

levels just below E_ and unoccupied levels immediately above EF. The core represents
those energy levels that are already completely filled. These are the only energy lev-
els in which an electron can exist. Therefore, if a primary electron penetrates the sur-
face of a metal with sufficient kinetic energy, it will be in the conduction band since it is
not able to enter the core by the Pauli exclusion principle.

Since the conduction band is partially filled, both the primary electron and the

internal secondary electrons will often suffer inelastic collisions in which only a small
amount of energy (a few eV) is lost to conduction band electrons. These frequent
small-energy-loss collisions cannot lead to external secondary electrons since the en-
ergy transferred between the colliding electrons is less than _. Therefore much of the
initially available energy is "wasted" and the yield is small.

The situation is quite different for insulators. Insulators have an electron affinity

that all electrons must overcome to become secondary electrons. ;[ is the energy
difference between the surface of the material and the bottom of the empty conduction
band. Below the conduction band is the valence band, which is completely filled for

good insulators. The core levels are at still lower energies. Between the bottom of the
conduction band and the top of the valence band is the band gap Eg; no electrons are

allowed in this energy region. In insulators the width of the band gap is the major de-
terminant of the secondary electron yield.

As illustrated schematically by the diagram on page 4, a good insulator is char-
acterized by a large band gap. In this case most excitation processes raise an internal
electron above the vacuum level, allowing for possible secondary electron emission.

This is the basic reason why the maximum yield for insulators is much larger than for
metals. Semi-conductors have a small band gap. For such materials the situation is
similar to that of metals; hence the maximum yield for semiconductors is between

those for metals and insulators. For very large band gap insulators the maximum yield
tends to decrease somewhat, perhaps because the primary electron can penetrate to

greater depths before exciting the internal electrons.
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Fig. 2 Energy level diagrams for a semiconductor and for a large band gap insulator.

The diagram below shows the maximum yield versus the band gap for several
real solids (open circles), and the results of G. A. Rezvani's Monte Carlo simulations

(solid circles). The materials are identified in the table on the following page.
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:No. material Eg (eV)

1 PbS 0.4

2 Sb_Te3 1.t
3 GeS 1.8
4 PbO 2.6

5 Te02 3.0

6 Sb203 4.2

7 NaI 5.8

8 KI 6.2
9 CM 6.3

10 CJBr 7.0
11 CsCl 7.5

12 NaBr 7.7

13 KBr 7.8
14 RbCl 8.2

15 LiBr 8.5

16 KCI 8.5
17 NaCl 8.6

18
19
2O

21

LiCl 10.0

x (ev)

4.7
4.34

4.0
3.6

3.4
2.8

1.5

1.1
0.1
0.2

0.3

0.9

0.51

1.0
0.6

0.65

0.54

1.25

1.2
1.0
1.8

1.7

1.6

8.35
11.68
17.23

18.61
14.68

10.34

8.35
10.62

6.22

10.14
11.39

8.14

E,,, (,v)

5O0

700

400

6OO
6OO

5OO

1390
1430
2150

2340
1470

1430

630

1310

580

I000

1300

I000

1290NaF 10.5 12.38
KF 10.9 0.1 10.7 1100

LiF 12.6 1.0 6.42 540

Table 1 Band gap, electron affinity, maximum yield, and energy of primary

electron at maximum yield for several insulators.

The torturous nature of the SEE process is illustrated by the diagram on page 6
from one of Rezvani's simulations. The solid line shows the path, projected onto the

yz- plane, of a 400 eV primary electron incident normally on solid argon. The dotted

lines show the paths of the internal secondary and tertiary electrons. (A tertiary elec-

tron is one excited by a higher energy internal secondary electron, etc.) According to
Rez_ani, the primary electron suffered 200 interactions (the maximum allowed by his

simulation) and generated 22 internal secondary electrons and 7 tertiary electrons. In

this simulation run 12 of the internal secondary electrons reached the surface and

managed to escape.
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B. Characterization of External Secondary Electrons

The most important characteristics of secondary electron emission are the sec-

ondary electron yield versus the primary electron energy, the energy distribution of the
external secondary electrons, and the angular distribution of the secondaries.

Most of the research has focused on the first characteristic, secondary electron

yield as a function of primary energy. It has been shown that for all bulk solids the sec-
ondary electron yield will start from zero at Ep = 0 eV, rise rapidly to a maximum yield

5m at Em, then slowly decrease with Ep > E m. If the secondary electron yield for some
material were plotted versus energy of the primary energy, the result would be a varia-

tion of the "universal" yield curve. Such a curve is shown below.
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Fig. 5 Universal SEE yield curve.

Typical values of the maximum yield for various materials are shown in the fol-
lowing table. Notice that the yield is greater than one, often by a large amount, for
semiconductors and insulators.

Material Maximum Yield

Metals less than 1

Semiconductors 1-2

Polymers 2-3

Insulators 6 - 12



It is convenient to define E 1 and E 2 as the energies of the primary electron for

which the yield is 1.0. These energies are significant for plasma-insulator interactions;

for E 1 < Ep< E 2 the yield will be greater than 1.0, and the insulator will charge posi-

tively. Likewise, for Ep < E_ and Ep > E 2 the yield will be less than 1.0 and the ma-

terial will charge negatively. For insulators E_ is about 16 eV, Em is around 200 - 400

eV, and E2 is typically greater than 1000 eV.

The next important characteristic of secondary electron emission is the energy

distribution of the secondaries. The major features of this distribution are illustrated on

the next page for a typical primary energy Ep = 150 eV. The maximum S at 10 eV is

nearly independent of Ep, and is therefore representative of "true" secondaries. These

are electrons that were initially present as bound electrons in the solid, were excited

by the primary electron, and finally managed to escape from the surface to become ex-

ternal secondary electrons.

The maximum B is located at the primary energy Ep, and can only be from pri-

mary electrons that have undergone elastic back-scattering. The shape of the small
maximum U is characteristic of the material and originates from inelastically scattered

primaries, i.e. primary electrons that suffer only one or two inelastic collisions before

being scattered back out of the solid. The region between 50 eV and the maximum U

originates from a mixture of true secondaries and inelastically scattered primaries.
The two types of secondary electrons in this region are not distinguishable by means

of external measurements.

The results of secondary electron emission described in Part II of this report are
based on Monte Carlo simulations of the SEE processes. To simulate the elastic scat-

tering, a general overall form of the elastic scattering cross section typical of low atom-

ic mass elements (12 to 40 amu) was used. Since detailed features of elastic scatter-

ing for specific elements were not included, the simulations were not able to reproduce

the back-scattering peaks at U and B for primary energies Ep > 50 eV. However, for

primary energies 0 < Ep < 50 eV the back-scattering peak at B was obtained. In all

cases the simulations give good results for the main secondary peak at S, which is

more important for the purpose of modeling the plasma-insulator interactions.

The final important characteristic of secondary electron emission is the angular

distribution of the external secondaries. Because of the large number of collisions suf-

fered by the primary and secondary electrons inside the solid (tens or hundreds in typi-
cal cases), the angular distribution of excited electrons near the surface should be es-

sentially isotropic. But since the excited electron must be traveling toward the surface
to be emitted, the angular distribution of external secondaries should approximate a

cosine weighted distribution, Le., weighted in the direction of the outward normal to the
surface. Rezvani found that this distribution is essentially independent of the energy

of the primary electron and of the angle of incidence of the primary electron. A straight

forward cosine distribution is generally accepted for experimental results. However,
the Monte Carlo simulations give a distribution peaked slightly more in the forward

direction, as will be presented in Part I1.
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However, the broad features of the diagram are true of almost all materials.

In these simulations, Rezvani observed that after a primary electron, or excited

internal electron, suffered two or three interactions with other electrons it would "forget"

about its initial direction of travel. Furthermore, most internal secondaries are excited

with modest energies of 5 to 50 eV, and after excitation become "ignorant" of the ener-

gy of the primary electron. This behavior appears vividly in the jagged nature of the

tracks for both primaries and secondaries (Fig. 4). Consequently, both the energy dis-

tribution and the angular distribution of secondary electrons are nearly independent of

the primary energy and of the angle of incidence of the primary.

This independent behavior on the part of the secondary electrons is observed in

all bulk solid materials. For very thin films, however, more detailed features of the
paths would have to be taken into consideration. From Fig. 4 the mean penetration

o

depth of the primaries is about 50 A, and most secondaries do not wander to depths

below 200 _. Therefore, "thin" means only a few hundred _,ngstrom units. We shall

concern ourselves with bulk materials in the solid state, and refer the interested reader
to the literature for thin films.

In the next part of this paper we will develop a method of simulating secondary

electron emission for use in numerical simulations of plasma-insulator interactions.



TI. Method of Including SEE in Numerical
Simulations of Plasma-Insulator Interactions

When an insulating solid is situated in a plasma environment, the resulting in-
teractions affect the properties of both the insulator and the plasma. The insulator will

acquire a surface charge, which may be negative or positive depending on the poten-
tial of the insulator and the properties of the plasma. In addition the density and veloc

ty of the particles in the plasma will be affected out to a distance of several Debye
lengths away from the insulating surface. One way of studying the behavior and
physics of these interactions is to create a computer simulation to follow the motion of
the charged particles in the volume of the plasma near the surface. In any such pro-
gram an important feature of the plasma-insulator interactions is the production of
secondary electrons when an electron from the plasma impacts the surface of the
insulator. The purpose of this report is to describe a method for incorporating the

SEE response of an insulator (or metal) surface into a computer simulation of the

plasma-insulator interactions.

The situation we wish to describe goes as follows. An electron in the plasma,

moving under the influence of the electric fields produced by all the charges in the sy_
tem, impacts at a certain time somewhere on the surface of the insulator. From the ve-
Iocity components of this primary electron, we can determine its kinetic energy and
angle of incidence onto the surface. At this point in the simulation, we need to deter-
mine how many secondary electrons are emitted. If there are some, we will need to
determine the kinetic energy and direction of motion of each of the secondaries. In th4

following sections of this part we describe the distributions and procedures that can bt

used for this purpose.

A. Total Yield vs. Primary Electron Energy

The secondary electron yield 5 depends on the kinetic energy and angle of inc

dence of the primary electron, and is also influenced considerably by the properties o
the material that forms the surface. Typical behavior for model quartz and aluminum
is shown on the figures on page 14. At zero primary energythe yield is zero. (But

even for primary energies of a few eV there are a considerable number of elastically
reflected primaries; see section D.) As the primary energy increases, the yield in-
creases rapidly, simply because more energy is available for producing secondaries.

The yield reaches a maximum at some energy Era, and then decreases slowly for higt

er primary energies. This is because higher energy primaries penetrate more deeply
into the material, which implies that the excited electrons have further to travel before

escaping from the surface.
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A convenient fitting formula for 5 o, the yield at normal incidence (0 = 0), is pro-

vided by the Haffner formula.

8o(Ep) = C (e-a - e-bG) (2.1)

The parameters a, b, and C are empirically fitted to experimental or simulation data for

a particular material. To relate 8m and E m to these parameters, we start by setting the

derivative of 5 equal to 0:

0 = _So(Ep ) _ C (-ae-aEp + be-bE_)
3Ep (2.2)

le

)e

ae-aEp = be-bEp
(2.3)

Em - log (b/a) (keV)
(b - a) (2.4)

This is the energy of the primary electron for which the yield _i is a maximum.

Assuming the maximum yield 5rn is known from the data, the parameter C can be

found by inserting Ern into the Haffner formula:

ci-

3f

_°

Ih-

Y

5m=C(eaE -ebE ) (2.5)

C= (_ITI

( e-aE=- e-bE=) (2.6)

For the plasma-insulator simulations we should like to use quartz as a prototype
for a good insulator. But the complexity of the composition and crystal structure of

quartz prevent us from a direct simulation of the secondary electron emission, and the



experimental data are old and questionable. Therefore to find parameters for quartz
we look at our simulation results for KCI, which has a band gap of 8.5 eV that is
comparable to 8.0 eV for quartz. Similarly, the electron affinity for quartz is 1.0 eV,
whereas the electron affinity of KCI is 0.6 eV. We have performed extensive simula-
tions with model KCI for Z = 0.0 eV and 7,= 2.0 eV. Since the electron affinity for
quartz is halfway between these values, we propose a simple linear interpolation be-
tween the results for the two models of KCI, as illustrated below.

5(Ep)

lO. Or T , , ' ' '

I
T

r T I ]"
i T ' '.

I

!

4.0

2.0

I I I I ] I I

°'Eb o.zo0.40o. oo.Bo .0o .2O

Ep (keV)

Fig. 7 Haffner yield curves for several model solids.

(a) Model KCLwith Z = 0.0 eV

(b) Model quartz with Z = 1.0 eV

(c) Model KCL with Z =2.0 eV

The secondary electron yield also increases with increasing angle of incidence

of the primary electron, where 0 is measured from the normal to the surface. As e

increases, the depth to which the primary electron penetrates decreases; thus the ex-
cited internal electrons have less distance to travel to the surface, and the secondary

yield becomes larger. An empirical formula to represent this effect is:
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8(0) = _5oe'_-_°_°_ (2.7)

Some references suggest a value of c = 2 for polymers, but this choice would make

8(900)/80 = e2 = 7.4. From a few Monte Carlo simulations of SEE at fairly large

angles (e = 60 o to 80°), our experience indicates that this factor is too large. We prefer

to use c = 1, which gives 8(90°)/8o = e = 2.7 instead.

On page 14 are plots of the Haffner formula for quartz and aluminum with

angle 0 varying from 90 ° for the greatest yield down to 0° in increments of 30 °. The

values of the parameters we used are shown below:

Material _ E-'rn

Quartz a = 1.02/keY 377 eV
b = 5.47/keV

C = 14.02

Aluminum a = 0.5/keY

b = 8.3/keY

C = 1.23

360 eV

The data for aluminum are taken from "Experimental Result B" in Rezvani's Ph.D. the-

sis, volume 1, page 211. The curves for quartz are fitted to the results of Rezvani's

Monte Carlo simulations, as shown in Fig. 7.

In a numerical simulation that would involve secondary electron emission, one

would typically keep track of the positions and velocities of the particles in the simula-
tion volume. When a primary electron strikes the insulator surface, the required vari-

ables for the Haffner formula are calculated as follows.

me _/V2 + Vy2 + Vz2

Ep = 2 x 1.602189 x1019
eV

(2.8)

3e

,X _

Y

,q V 2 + V_ ) radiansOp = arctan Vz (2.9)
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The yield 5 from the Haffner formula will be a fractional number. This number is

a ratio of primary electron current to secondary electron current. However, in a numer-

ical simulation it may be necessary to obtain an integer value for the yield N(6).

A simple solution to this requirement can be found if, as in many simulations, a large
number of primary particles are involved. In this case the number 6 can be considered

to be the average number of secondary electrons emitted from the material per inci-

dent primary electron.

The method we use to accomplish this result begins with a call to a subroutine

YIELDMAX, which calculates the Haffner formula as in equation (2.7) and returns the

value YIELD. We then add a random fraction te the yield and truncate the sum to an

integer:
y = RAN(seed)

Npos = INT(yield + Y)

Y isa random fractionfrom 0.0 inclusiveto 1.0 exclusive, and Npo s isthe integer value

corresponding to the yield 6. (Npo s isan abbreviation for Number possible, signifying

that this is the greatest possible number of secondaries that can be liberated by the

current primary. But because of energy considerations the final yield may be less than

Npo s. More on this later in section C.)

To understand this algorithm consider the following example. Let's assume that

6 = 1.7, so some of the time the integer yield will be 1 and some of the time the integer

yield will be 2. Since the fraction that is added to the result of the Haffner formula is
chosen at random, 70% of the time the sum will be equal to or greater than 2 and 30%

of the time it will be less than 2. Repeating the process for a large number of secon-

daries, an average value of 1.7 will be obtained for the yield.

B. Energy Distribution of Secondary Electrons

Each secondary electron that is produced in a numerical simulation needs to be

assigned an energy and a direction. At present our concentration will be on assigning

an energy to each secondary electron with a suitable distribution function.

We developed our distribution function based on Rezvani's simulation data for 100

primary electrons with Ep = 50.0 eV at normal incidence on solid argon. The his-

togram of these results is shown in the figure on page 18. Since the relative number of
secondaries climbs rapidly at low secondary electron energies and falls off rapidly as

E s increases past 5.0 eV, we decided to try a distribution function of the form:



f(Es) = A _ e -_)2 (2.10:

:=:> dP(Es) = f(Es) dEs (2.1 1

Now we can establish some properties of this distribution function. First we nor

malize the integrated probability to unity.

1 = P(Es) = dP(Es) = f(Es) dEs

(2.12)

(2.131

Making the substitution u = (Es/Eo) 2 produces an integral that can be expressed in

terms of the gamma function £(u).

1 AEy I =
-- U3/4-I e-U du

2
(2.141

i
m ! A E 3a F(o.75)

2 (2.15;

=:> A = 1.632 E; 3/2 (2.16)
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To find the maximum of the distribution function, we set the derivative with respect to Es

equal to zero

_f(Es) _ E3rZ
(2.17)

(2.18)

3)

The average energy is found from

Esf(Es)dEs

With the usual substitution u = (Es/Eo) 2 the result is

e -0z_--°)2dEs

(2.19)

F(1.75) Eo =
F(0.75)

0.9064"Eo =
1.2255

0.7396 Eo
(2.20)

A least squares fit of this distribution to Rezvani's data gives Eo = 10.28 eV.

Rezvani's data and the fitted distribution function are shown on the next page.

15)

16)
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Notice that this distribution is not a MaxwelI-Boltzman energy distribution. In

fact, early attempts to fit the histogram with a MB distribution gave poor results. If the

peak of the MB distribution is chosen at about 5 eV to fit the histogram, then the high
energy end of the MB distribution is much too large for the results of the distribution as

displayed on the histogram. Physically, there is no reason to expect the secondary

electrons to fit a MB distribution, which corresponds to thermal equilibrium. Although
the secondary electrons make a number of collisions with atoms in the solid before es-

caping (the number of collisions can be anywhere between one and several hundred),
they do not by any means come into thermal equilibrium with the solid or with each

other. Consider, for example, the average energy of the secondary electrons at 7.5 eV;
this is much greater than kTroom = 0.025 eV.

It will be seen that most of the secondary electrons have modest energies, in the

range 5 to 15 eV. This is significant for the plasma-insulator simulations in two ways.
First, the secondary electrons have enough energy to wander away from the surface

for a significant distance (several centimeters) which allows them to drift in the electric

field present near the surface. But when these secondary electrons fall back onto the

surface, they produce a yield less than one, as given by the Haffner formula eq. (2.1).
However, as will be discussed in section D of this part, at the lower energies there is a

significant probability that the impacting electron will be elastically reflected. These

effects can produce a significant current sheath just above the surface of the insulator,
which can be considered to be a surface current. Without secondary electron emis-

sion this effective surface current would not be present.
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Once the distribution function f(E s) is known, there are two more steps in order

to select energies in accordance with the distribution function. First, we need to obtain

the integrated probability from 0 up to each Es.

_0 E$ •

P(E ) = f(E )

(2.21)

The values of P(Es) increase monotonically from zero at Es = 0 up to unity.at Es = _.

Actually, we cut off the distribution at Es = 30 eV because the values of f(E s) are

negligible for Es > 30 eV. Second, we need to select a random number 0 _<r < 1.

With this number we find the value of Es for which

P(Es) = r (2.22)

The solution of this equation can be written symbolically in terms of an inverse func-

tional relationship.

Es = P-l(r) (2.23)

Sometimes it is possible to carry out both steps of this process analytically, and

then the last equation can be written as a specific algorithm to give Es directly from r.

This state of affairs occurs, for instance, for a two dimensional MB distribution (but not
for one or three dimensions0. In our case the integrated probability would involve an

incomplete gamma function; we have yet to come across the inverse of such a func-
tion. Our alternative is to integrate the distribution function numerically and make a

table of P(Es) vs. Es. Then to economically accomplish the solution of equation (2.22),

we use interpolation to construct the inverse table, namely Es vs. P(Es), at uniform

intervals of P(Es). We can then quickly solve equation (2.23) by table look-up and in-

terpolation. Furthermore, since both tables have as their first column evenly spaced
entries, we can use a one line algorithm to find the entries we want without searching

through the tables. For example, say we have a value for P(Es) and want to find the
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corresponding E s. Assuming there are 100 evenly spaced entries for P(Es) , which

ranges from 0 to 1, we find the index ] as

t = INT(IO0"  -) + ] (2.24)

Then the desired value of Es lies between Es(] ) and Es(]+l), and we can quickly
find E s by linear interpolation.

The procedure we have developed in this section is based on the assumption
that the energy distribution for Es of the secondary electrons is independent of the

energy Ep of the primary electron. For Es _>50 eV this assumption is reasonably

valid. Once an internal secondary electron is excited, it has no further knowledge of
Ep, and most internal excitations occur in the range from 0 to 40 eV. We have also

checked this assumption with the results of the Monte Carlo simulations of SEE for

argon with Ep = 50 eV and Ep = 400 eV; there is no discernible difference between

the two histograms for the secondary electron energy distribution (although there is a

sizable difference in yield for the two cases). When Ep < 50 eV, however, less ener-

gy is available for formation of secondary electrons, and additional considerations

must be take into account. These considerations will be considered in the next sec-

tion. There is also a much larger chance for reflection of the primary electron, as
discussed in section D.
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C=
Considerations on Yield and Energy of Secondary
Electrons at Low Primary Electron Energies

We can now look in detail at the energy considerations involved as secondaries

are liberated from bulk solid material. Consider the energy level diagram below.

When a primary electron strikes an insulator with some energy Ep, it may drop at most

to the bottom of the empty conduction band since all of the states in the valence band
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are filled. The most energy that can be delivered to the material by the primary elec-
tron, then, is the sum of its kinetic energy and the electron affinity X:

AEma x = Ep + X (2.25)

Any internal electron that becomes sufficiently excited because of the energy
liberated by the primary electron may become a secondary electron. Each secondary
electron will come from either the valence band or the core. However, the deeper the
excited internal electron is, the more energy it will require to get to the surface of the
material and become a secondary electron. The most loosely bound electrons in the
solid are at the top of the valence band. These will require a minimum energy:

E b = Eg + X (2.26)

just to reach the vacuum level. E b is the surface barrier. Any excited internal electron

having less energy than this will have no chance of becoming an external secondary
electron.

On the other hand, if an excited internal electron is able to make it to the surface to be-

come a secondary electron, the greatest energy it can possibly have is:

Esm_x = AEmax- Eb

= (Ep +Z)- (Eg + Z)

(2.27)

Esma_ = Ep -Eg

Now it is necessary to insist that Esma x > 0 in order to have any production of

secondary electrons. Hence there is a minimum value of Ep, which is obtained by

setting Esrnax= 0.

E O --- Epmi. --- Eg (2.28)
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If a primary electron strikes the surface with Ep < E o, then the yield of secondary elec-

trons must be zero. There is still the possibility, however, that the primary electron can

be elastically scattered back out of the solid. The treatment of reflected electrons will

be discussed in section D.

We can now consider the procedure for assigning an energy to the first sec-

ondary electron when Ep > E o. We calculate 5(Ep) from the Haffner formula, equation

(2.7), and then obtain the integer value Npo s by the algorithm on page 15. The maxi-

mum energy available for the secondary electron is given by equation (2.27).

Esma_l = E_ -Eg

Therefore we must truncate the energy distribution function of section B at Esma x 1" The

total probability that the secondary electron will have an energy between 0 and Esrnax 1

is 1.00. In order to obtain this result, we must renormalize the distribution function be-

tween 0 and Esma x 1 as follows. We have a table of integrated probability for the com-

plete distribution function according to

,_0 _s

P(E ) = p(x) dx

(2.29)

By table look-up from this table we obtain

Pmax = P(Esma,, 1). (2.30)

Then we define the truncated distribution by

p'(Es) - p(Es)

and the same relation follows for the integrated probability.

P(Es)
P'(E,) =

Pmax (2.31)
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it will be seen that the integrated probability up to and including Esrnax1 is unity, as it
should be.

In order to select an energy Esl for the first secondary electron, we choose a
random number r such that 0 < r < 1. We want to set r equal to the integrated probabili-
ty for some E s.

r = P'(E0
_ P(E0

Pmax (2.32)

So we want to find Es such that

P(E0 = r Pmax (2.33)

We can find the desired value of Es by table look-up and interpolation in the inverse

table for Es(P ), just as in the preceding section. The advantage of this approach is that

we do not need to actually construct a new table of P/(Es) for each value of Esma x 1 •

We simply look for a different value of P(Es), according to equation (2.33).

When 8(Ep,8) is large enough to give Npo s > 2, there is the possibility of produc-

ing a second ( and perhaps a third, etc.) secondary electron. But there is only a finite
amount of energy to produce secondaries and enable them to overcome the surface

barrier. So we need some way of ensuring conservation of energy. We can do so with
the following equations.

AE,max2 = AEmax - Esl- Eb

= F__+ Z - Esl - (Eg + Z)

(2.34)

= F_,p -Esl-Eg

Esrnax 2 = AEmax 2 --(Eg + %)

= Ep- Esl - 2Eg- X (2.35)

If Esma x 2 < 0, we do not have enough energy to form another secondary electron, and

we do not allow for reflection of the primary electron in this case, so we quit. But if

Esmax 2 > 0, we proceed to select Es2 by the method of the preceding paragraph.
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When Npo s > 3, we continue to look for the possibility of producing more secon-
daries. The above process continues until either the number of secondaries produced

reaches Npos, or Esma x i < 0. The actual number of secondary electrons produced

is called Nact. Of course in all circumstances, Nact <- Npo s.

We can use the same procedure when dealing with secondary electron emis-

sion from metals. However, metals do not have a band gap nor an electron affinity. It
is the work function _ that comprises the surface barrier in metals. To correctly treat
metals, replace Z in equation (2.25) and Eg + Z in equation (2.26) with ¢. Then

equation (2.27) becomes

Esm_x = AEmax - Eb

= (Ep+_)-O = Ep (2.36)

Thus it is possible to form secondaries in metals for any Ep > 0; there is no threshold

energy. The reason for this difference in behavior from insulators is due to the differ-
ence in band structures. In a metal there are unoccupied electron energy levels imme-

diately above the Fermi level, so it is possible for the primary electron to drop right
down to the Fermi level. In insulators, this behavior is not possible because of the

finite band gap.

For most metals the maximum yield at normal incidence is less than one, but

for glancing incidence it is possible for values of Npo s = 2 or 3 to occur (see bottom

figure on page 14). Then from equation (2.35) we find

Esmax 2 = Ep -Esl-(_ (2.37)

and so on, and proceed in the same way as for insulators.

D. Reflection of Primary Electrons at Low Energies

When a primary electron enters an insulator, the most probable type of collision

is elastic scattering. When Ep < Eo, the threshold energy, the only kind of scattering

process that can occur is elastic scattering. Even when Ep is somewhat greater than

E0, inelastic scattering events have smaller probabilities and elastic scattering still

tends to dominate. The Monte Carlo simulations for low Ep primaries often show a

track in which the primary electron goes through anywhere from a few up to more
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than a hundred collisions before eventually escaping from the surface. In these

cases the energy of the escaping electron must still equal Ep, and we speak of elastic

backscattering or reflected primary electrons.

Fig. 11 on the following page shows the backscattering yield, or number of

elastically reflected primary electrons per total number of primary electrons, for

Ep ranging from 0 to 50 eV. It will be seen from the figure that backscattering is quite

important for low energy primaries from 0 to 15 eV. On the figure, the X's are the back-

scattering yield obtained from the Monte Carlo simulations for argon. To this data we
have fitted the following empirical formula:

_r(Ep < 16.8) = A Ep b e-(Ed c)a

8r(Ep > 16.8) = 0.06 (2.38)

The values of the coefficients as determined by least squares fitting are:

A = 0.40 c = 8.1

b = 0.70 d = 2.0

This form gives a rapid rise from Ep = 0, a maximum less than one at Ep = 5.0 eV,

a rapid decline toward Ep = 16 eV, and then a constant value for Ep > 17 eV. The

figure shows the empirical curve of equation (2.38), and the O's show the result of a
trial run with the average yield at each energy determined by using random numbers.

The results are in good agreement with the general behavior of Rezvani's simulations.

Since a reflected primary has undergone a number of collisions inside the solid

before escaping from the surface, it has lost track of its original angle of incidence.

(See Fig. 4.) Thus this phenomenon differs markedly from specular reflection, in which

the angle of reflection is equal to the angle of incidence. We have looked at the angu-
lar distribution of reflected primaries at several energies, and find that the results for re-

flected primaries are similar to those for "true" secondaries. Therefore we can use the

same angular distribution described in the next section for reflected primaries as well

as for true secondaries.

When the plasma-insulator simulation tells us that an electron strikes the sur-
face of the insulator, we proceed as follows. First we calculate the reflection yield 5rGf

from the empirical formula above, and then determine an integer yield in the usual

manner.

N,en = INT((_refl + r) (2.39)
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ENERGY OF THE PRIMARY ELECTRON (eV)

Yield of elastically reflected primary electrons. The X's are obtained from
the Monte-Carlo simulations, and the curve is from the fitted empirical
formula. The O's show the result of a trial run with the average yield deter-

mined by random numbers.

where r is a random number with 0 < r < 1. The result for Nref must be either zero or

one. When Nref =1, we assign Ep as the energy of the reflected primary and choose 0

according to the standard angular distribution. In this case there can be no yield of
secondary electrons. When Nret =0, we next calculate the yield from the Haffner formu-

la as given by equation (2.7) (when Ep > Eo), and proceed to handle secondary elec-

trons as described previously.

The large yield of reflected primaries at low Ep is bound to reduce the sec-

ondary electron yield in this energy range. This effect appears in the figure at the end
of the report showing true secondary yield vs. Ep. The effect is especially noticable

from 8 to 15 eV. The reflected primaries also show up as a backscattering peak at Ep

in the histograms for the energy distribution of secondary electrons, as well as on the

figure showing total yield as a function of Ep. These figures are also located at the

end of this report.

In the case of metals, primary electrons are not reflected to any significant ex-

tent. Even when Ep is as low as 2 or 3 eV, inelastic scattering processes are still possi-
ble in which an electron in the conduction band with an energy near the Fermi level is

excited by a small amount of energy. The possibiity of these small energy inelastic ex-
citations is the basic difference between the behavior of metals and insulators. Con-

sequently we do not consider reflected primaries when simulating SEE for metals.
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E. Angular Distribution of Secondary Electrons

The task of assigning directions in spherical-polar coordinates is somewhat

simpler than assigning energies to the secondaries. By examining Rezvani's simula-

tion results, we find that there exists azimuthal symmetry about the point of emission,

as expected physically. Thus the azimuthal angle ¢ can be chosen randomly between
0 and 2_.

(2.40)

where (z is a random number such that 0 _<o_< 1.

Next we need to select the polar angle 8, measured from the outward normal to

the surface (see Fig. 13 on page 31). For this purpose we plot results from Rezvani's

simulations on solid argon, as shown in Fig. 12 below. For these plots it is convenient
to introduce a new variable x = cos 8. Each distribution is normalized properly by

using the basic definition of a distribution function, namely,

AN = N fiX) AX (2.41)
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Fig. 12 Angular distribution of secondary electrons. The data points are

simulation results for SEE from solid argon. Dot-dash line and O's

are for Ep = 400 eV. Dash line and X's are for Ep= 50eV. The
solid line is the best fit to the combined sets of data.
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where N is the trial number of events, and AN is the number of events in the range of
width Ax. Then the normalized probability is given by

f(x) = j-- A_N__N
N AN (2.42)

There is a moderate amount of scatter in the simulation results because simula-

tions were run for only 100 primary electrons at each value of Ep. But within these lim-

its there is no significant difference between the angular distributions for the two very

different values of Ep at 50 eV and at 400 eV. Therefore we combine the results of

both distributions for the purpose of fitting an angular distribution function. In order to

accomodate some of the curvature, we perform a least squares fit with a function of the

form:

f(O) = A cos 0 + B COS2 O + C COS3 0 (2.43)

Since only those electrons that make an acute angle with the outward normal

willbe emitted (Fig. 13), we normalize the distribution for e ranging from 0 to x/2

1 = P(_) = dp(O) = N

= N (x/2
./0

f(O) sin(O) dO

{A cos(0) + B cos2(0) + C cos3(0)} sin(0) dO

(2.44)

(2.45)

With the substitution x = cos 0 we obtain the result

fl {_f c)1 = N {Ax + Bx 2 + Cx 3} = N + B +

N

q

(2.46)

(2.47)
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We determined the coefficients A, B, and C by fitting this distribution function
to the combined sets of simulation data for 50 eV and for 400 eV primary electrons.
The result is that A = 0.9900, B = 1.2375, and C = 0.0263. A plot of the best fit line is
shown along with the data in Fig.12.

In most of the literature on SEE an angular distribution proportional to cos e is
assumed. Then the normalized distribution function would be •

f(0) = 2 cos 0 (2.48)

This is a simple form and is qualitatively justifiable on the basis of physical arguments.
If we consider a cloud of internal secondaries, for instance, just beneath the surface,

the situation is similar to a cloud of molecules in a gas near some surface. The

velocity distribution of molecules actually striking the surface is weighted with a factor

V n = V COS 0 (2.49)

where v n is the normal component of velocity. A similar distribution should be reason-

ably appropriate for secondary electrons that manageto escape from the surface.

But the detailed processes of secondary electron emission are more complicat-

ed than this simple picture. The figure on page 6 of Part I shows the jagged and ir-

regular paths followed by each secondary electron in the solid. Furthermore, the in-
ternal secondary electrons are not in thermal equilibrium with the solid or with each

other, as mentioned previously. There is even a potential barrier to overcome at the

surface, so it is even less likely for a secondary electron with a small v n to escape. We

believe that this is the reason that our angular distribution, as fitted to the Monte Carlo

SEE results, is slightly more peaked in the forward direction than a simple cos 0 distri-

bution.

We have examined angular distributions for additional Monte Carlo simulations

of SEE with Rezvani's programs, especially for low primary energies of 10 to 50 eV. In

all cases we find a good fit with the angular distribution function described here. Even

for reflected primary electrons, which predominate for Ep below 10 eV, we find the re-

flected electrons follow a similar angular distribution. This result occurs because most

of the reflected primaries make a number of elastic collisions (5 to 200) inside the

solid before escaping from the surface. So we can use the same angular distribution

function for all cases of reflected primaries and true secondaries.
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Once the angular distribution function is specified, we can develop the proce-
dure for assiging an angle e to each secondaryelectron. First we tabulate the values
of the integrated, normalized angular distribution function versus decreasing values

of e, as e ranges from _/2 to 0.0; we consider cos e to be the variable of integration.

Then, as for assigning energies to the secondaries, we choose a random number
between 0.0 inclusive and 1.0 exclusive to represent the value of the integrated distri-

bution function at some angle e. In order to facilitate the process of finding the angle e

that corresponds to this value of the integrated distribution function, we construct the

inverse look-up table listing e vs. integrated distribution, at equal intervals of integrated

distribution. Then we can readily find the appropriate angle e by table look-up and in-

terpolation. To check the program design for this purpose, we have used random
numbers in the process of selecting values of e for 1000 secondary electrons, with the

results shown at the end of this report.

V

Fig. 13 A secondary electron being emitted from solid bulk material.
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F= Determining Velocity Components of Each
Secondary Electron

When all the secondaries have been assigned an energy and direction, the

only remaining task is to determine the components of velocity for each secondary

electron. Recalling equation (2.7), we find the magnitude of the secondary electron's

velocity as:

Vs (2 x Es x 1"602189x1019 )1/2= rr_ m/s
(2.50)

Then the velocity components are given by (Fig. 13):

Vx = V x sin(O) × cos(t))

My -- W x sin(O) × sin(O)

Vz = V × cos(O)
(2.51)
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III. Concluding Remarks

The procedures outlined in Part II and the FORTRAN code in Appendix C were
developed to realistically simulate secondary electron emission in bulk solids caused

by incident electrons in a space environment. We have made no attempt to include
secondary electron emission for materials in any other physical form, or emission in-
duced by other particles o[ photons, or high temperatures. The interested researcher
is referred to the literature for such cases. Our model will produce realistic results for

primary electron energies between 0.0 eV and 1.0 keV with an angle of incidence be-
tween 0.0 and _/2 radians. However, some words of caution are in order.

First, the experimental and simulation data we used to develop our distribution
functions and yield curves are generally from coarse data with the first data point at 50
or 100 eV and the highest at 1.0 or 1.2 keV. Experimental data for low energy primary
electrons collected by Bruining show fine structure in the secondary electron yield 5,
whereas the smooth curve obtained from equation (2.1) is actually an extrapolation
back to 0.0 from 50 eV. But since the shape of the fine structure is dependent on the

type of material and the fine structure in the actual yield curves produces little variation
from equation (2.1), we deoided to ignore such features in order to gain breadth of ap-
plicability. By running some additional simulations with Rezvani's programs at low Ep

(0 to 40 eV), we have been able to describe the behavior of SEE in this region more
realistically. The description of section IIC now gives a good picture of the phenomena
involved with low energy primaries.

Second, Bruning suggests that as the primary electron energy increases from
0.0 eV to some small value the probability that the primary electron suffers specular re-
flection increases. But the discussion of this in the literature is sparse, and little quanti-

tative information is available. Fortunately the new runs with Rezvani's programs
demonstrate the behavior of reflected primaries (elastically backscattered primary

electrons) very nicelyl The large yield of reflected primaries for F_.p< 10 eV, as de-

scribed in section liD, will have a noticeable effect in the plasma simulations for solar

panels.

Third, the secondary electron energy distribution function we developed effec-

tively goes to 0.0 at 30.0 eV with 8-bit floating point numbers. Our distribution is cer-
tainly good for simulations where the primary electron energy is less than 1.0 keV.
However at higher energies the number of inelastically backscattered primary elec-
trons increases, but our distribution (and Rezvani's model) does not account for the
characteristic elastically backscattered primaries at larger primary energies

(Ep >100 eV). If these cases are to be accounted for we suggest development of
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another distribution that will account for the required higher secondary energies. Then

the programmer can choose between our energy distribution or the new one in an IF

block as needed.

Fourth, the literature generally subscribes to a cosine distribution for the angular

distribution of the secondary electrons. This form was used by early researchers in
this field and has remained the traditional distribution. We, on the other hand, have fit

the distribution function of eq. (2.22) to the simulation results. There is actually not a

great deal of difference between our angular distribution and a cos e distribution. We
believe that our distribution is somewhat more realistic in representing enhanced

emission at forward angles, near the normal direction.

The plots on the following pages are from several runs of our simulations at

designated energies of the primary electron; Ep is set in the routine SECONDARIES

and ep is maintained at zero. All the simulations were run with a sum total of less
than 35 seconds of CPU time.

All the plots show the behavior for model quartz, with band gap Eg = 8.0 eV.

The first three figures give the yield 5 versus primary energy Ep from 0 to 50 eV.

The influence of the finite band gap in reducing the yield of true secondaries for

Ep < 15 eV is evident in the first plot. The second plot shows the importance of reflect-

ed primaries for Ep < 15 eV, and the third plot gives the combined results for all elec-

trons coming back from the surface.

The next four figures show the energy distribution of the secondary electrons.

At low primary energies (Ep = 9 and 14 eV) the influence of the band gap on the

energy distribution is readily apparent. At larger primary energies (30 and 50 eV),

the only noticeable effect is the backscattered peak at E s = Ep.

The angular distribution of the secondary electrons is shown in the last two

figures. The distribution for the polar angle is peaked somewhat toward the normal

(8 = 0°, cos 0 = 1)i as discussed previously.. The distribution for the azimuthal

angle is flat, as expected, with p(_) = Po = 1/(2=) = 0.159.

As can be seen on the plots, the simulation results follow well the analytic distri-

butions and arguments of Part I1. Providing correct results with a minimum of CPU time

is the best that can be expected of a numerical simulation of this nature. For this we
have strived and, within the limits of our model, this we have obtained.
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C. FORTRAN Programs

c subroutine SECDATA

C
c This subroutine is used to input the data files for secondary electron
c emission. It is used only once at the beginning of a simulation.

c
c sec_energy_file2 the data of secondary energy vs. probability
c sec_theta_file the data of secondary angle vs. probability
c sec_energy_file the data of probability vs. secondary energy

C

subroutine secdata

common/energy/AREAeng(3001),VALUEeng(3001)
common/angle/AREAthe(501) VALUEthe(501)
common/energy2/AREAeng2(1001 ),VALUEeng2(1001 )

open(unit=92,file='sec_energy__file2.dat',status='old')
open(unit=91 ,file='sec_thet a_file.dat',status='old')
open(unit=90,file='sec_energy_file.dat',status='old')
do i=1,3001

read(90,')VALU Eeng(i),AREAeng(i)
if(i.lt.502)then read(91 ,°)AREAthe(i),VALUEthe(i)

end if
if(i.lt.1002)then read(92,*)AREAeng2(i),VALUEeng2(i)

end if
end do

close(unit=90) '
close(unit=91 )
close(unit=92)

return
end

........... end of secdata ........................

subroutine SECONDARIESC

C

c Secondary Electron Emission
c
c Given on input the primary electron's velocity components [Vx], [Vy], and [Vz], and
c an integer value [MAT] to indicate the type of material involved, and an integer
c value [BOUND] to indicate the boundary surface, this routine will calculate the
c primary electron's kinetic energy [Ep] and its angle of incidence [THETAP]. This
c routine will also determine the probability of the primary electron elastically
c reflecting with a call to "YIELDMAX".
C
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c Afterwards, the secondary electron production calculations will begin with a call to
c "YIELDMAX," which will calculate a secondary electron [YIELD] based on the
c Hal!net formula. This real number is added to a random number less than one and
c the sum is truncated to an integer. This integer is considered to be the total

c possible secondary yield [Npos].
C

c This routine will then call a second routine called "SECENERGY" to assign an
c energy [Es] to each secondary electron. To conserve the energy delivered to the
c material by the primary electron, [Ep] + Ki will be considered the maximum amount
c of energy available to all the possible secondaries. Each (Jth) secondary will
c receive an energy from a Monte Carlo method until there is no longer enough
c energy to allow the (Jth+l) secondary to overcome the materiars surface barrier,
c or until J = [Npos].
C

c Then a third routine called "SECANGLES" will be called to assign the angles
c [THETAS] and [PHES] to each secondary that had enough energy to overcome
c the surface barrier, rrHETAS] will be choosen with a Monte Carlo method first,
c then [PHES] will be choosen at random.
c
c With the angles and energies of each secondary now assigned, this routine will call
c its final subroutine "SECVELOCITIES" to assign velocity components [Ux], [Uy],

c and [Uz] that are consistent with each secondary's assigned angles and energy.
c
c With all calculations now complete this routine will return the values [Nact], which
c is the actual secondary electron yield, and the velocity components [Ux], [Uy], and

c [Uz], which are arrays of dimension [Nact].
C

c If [Nact] = 0 then no secondaries were produced, but the primary stuck to the
c material. If [Nact] = -1 then no secondaries were produced, and the primary was
c reflected from the material. A postive value for [Nact] indicates the actual number
c of secondaries produced, and that the primary stuck to the material.

C

subroutine secondaries(I,Vx,Vy,Vz,mat,bound,Uxx, Uyy,Uzz,Nact)
C

real Vx,Vy,Vz,thetap, Ep, Ki
integer bound,mat
integer I

.!Values of the primary electron
! Indicates the type of material
! The passed random number argument

real Uxx(30),Uyy(30),Uzz(30)
real thetas(30),phes(30)
real Es(30)
real yield
integer Nact,Npos

! Secondary velocity
! Secondary angular direction
! Energy of each secondary
! Value from the Ha!trier formula

! Actual and possible yields

logical reflect
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assign values to a, b, c, and Eg

if(mat.eq.1)then
a = 1.02

b = 5.47

c = 14.02

Eg = 8.0
Ki = 1.0

Wl' -- 0.0

else if(mat.eq.2)then
a =2.0

b = 15.0

c = 4.72

Eg = 4.0
Ki = 1.0

Wf = 0.0

else if(mat.eq.3)then
a =0.1

b = 10.0

c =2.12

Eg = 0.0
Ki = 0.0

W! = 5.0

else ff(mat.eq.4)then
a = 0.5

b =8.3

c = 1.23

Eg = 0.0
Ki = 0.0

Wf= 4.25

end if

for Haffner formula

! The material is QUARTZ

! Eg is the band gap energy

! Wf is the work function

! The material is

! Holmes-insulator

! Ki is the electron affinity

! The material is Holmes-metal

! a, b, and c are parameters

! for the Haffner formula

! The material is ALUMINIUM

t This value of Wf is from

! Rezvani thesis, Vol 1, page 206

c

c calculate the energy and angle of incidence of the primary

c

Vsqrd = ((Vx *" 2) + (Vy ** 2) + (Vz "" 2))

energ = 0.5 * 9.109534E-31 * Vsqrd ! Ep in JOULES
Ep = energ/(1.6021892E-19) ! Ep in eV

c

if ((bound .eq. 1) .or. (bound .eq. 3) .or. (bound .eq. 5)) then

thetap = atan(sqrl((Vx ** 2) + (Vy ** 2))/-Vz)

else if (bound .eq. 2) then
thetap=atan(sqrt(Vx'*2+Vz**2)Ny)

else if (bound .eq. 4) then

thetap=atan(sqrt(Vx**2+vz**2)/-Vy)

end if

c

c write(16,*)'- .............. _............. '
c write(16,')'ep=',ep,' thetap=',thetap

c
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c calculate the possibility of reflection
c

if (mat .EQ. 1 .OR. mat .EQ. 2)then
call elasret(I,Ep,reflect)

if(reflect)then
Nact = 1

! Reflection
! The reflection is elastic,
! but not specular

Es(1) = Ep
call secangles(I,Nact,thetas,phes)
call secvelocities(bound,Nact,Es,thetas,phes,Uxx,Uyy,Uzz)
Nact = -1
return

end if
end if

calculate the total possibile yield

y = ran(I)
call yieldmax(a,b,c,Ep,thetap,yield) ! This is the integer value ot
Npos = int(yield + y) ! secondaries that may be produced.

c
c assign an energy to each secondary and find [Nact]

c
call secenergy(I,Ep,Eg,Ki,Wf,Npos,Es,Nact)

c
c The remaining energy may be considered to have been absorbed by the crystal
c lattice. Thus Ep is now zero and the primary is "STUCK."

c if(nACT.eq.0) then ! Even though there existed the possibility of
return ! producing secondaries, because of energy

end if t considerations none were produced.

c
c assign the directional angles to each secondary

call secangles(I,Nact,thetas,phes)
c calculate the components of the velocities for the secondaries

call secvelocities(bound,Nact,Es,thetas,phes,Uxx,Uyy,Uzz)
c all calculations are complete for that primary electron

c
c write(16,*)'npos=',npos,' nact=',nact
c do i=1 ,nact

• * " "' es= ,es(_), thetas',thetas(i)c write(16, )l= j, ' " '
c end do

return
end

c......................... end of secondaries ..........................

c subroutine SECANGLES
c
c This routine will assign values to the spherical-polar angular
c coordinates theta and phe for each secondary electron.
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c The azimuthal angle, theta, will be generated with a Monte
c Carlo method using the distribution function:
c
c Y = A COS(theta) + B COS^2(theta) + C COS*3(theta)
c
c where the parameters A,B, and C are determined by a best fit to G. A. Rezvani's
c secondary electron angular distribution data for runs at 50 eV and 400 eV.
c The polar angle, phe, will be chosen at random since the determination of
c phe= 0.0 is arbitrary to the plasma simulation.
C ........

C

C

C

subroutine secangles(I,Nact,thetas,phes)

integer Nact
real thetas(30),phes(30),rtheta

find the angles

do i=1,Nact
rtheta = ran(I)
call find_t heta(rtheta,thetas(i))
phes(i) = ran(I) * (2 * 3.141593)

end do

return

end

C ............ end of secangles

C ..........

C

C

C

C

C

C

C

C

C

C

C

C _ ........

subroutine SECVELOCITIES

This routine will assign values to the velocity components
[Ux], [Uy], and [Uz] for each secondary electron, [Ys].

For each secondary electron the magnitude of the total velocity [V] is calculated
from a knowledge of its total energy [Es]. Then each component is calculated
according to the following equations:

Uz = V * cos(theta)
Uy = V * sin(theta) * sin(phe)
Ux = V * sin(theta)* cos(phe)

c

C
subroutine secvelocities(bound,Nact,Es,thetas,phes, Uxx,Uyy,Uzz)

integer Nact,bound
real Es(30), Uxx(30), Uyy(30), Uzz(30),thetas(30),phes(30)
real m,V

m = 9.109534E-31
c = 1.602189E-19
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do i=1 ,Nact

end do

return

end

C:"- .........

V = sqrt((2 * Es(i) * c)/m)
Uxo = V * sin(thetas(i)) "cos(phes(i))

Uyo = V * sin(thetas(i)) * sin(phes(i))

Uzo = V * cos(thetas(i))

if ((bound.eq.1).or.(bound.eq.3).or.(bound.eq.5))then

Uxx(i)=Uxo

Uyy(i) =Uyo

Uzz(i)=Uzo
else if (bound.eq.2) then

Uxx(i)=Uxo
Uyy(i)=-Uzo

Uzz(i)=Uyo

else if (bound.eq.4) then
Uxx(i)=Uyo

Uyy(i)=Uzo

Uzz(i)=Uxo
end if

end of secvelocities

C .......................

c

c
c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

subroutine SECENERGY

This routine assigns an energy [Es] to the secondary electrons. The information

that comes from the calling routine is the total avaliable energy [Eavail], the

threshold energy from the material's band gap [Eg] and electron affinity [Ki], and

the total possible yield from the (modified) Haflner formula. This routine will loop

until all the electrons given by the Haffner formula have been assigned an energy,
or until the energy equation cannot be satisfied:

Eavail = > Ki + Eg + Es(I) + sum[Es(I-1) + Eg + K_ (1)

Since each secondary must overcome the surface barder, it will lose an amount of

energy equal to Eg + Ki before it is outside the material. The sum of the energies

assigned to each secondary plus the sum of the energy lost as each secondary

crosses the surface barrier must not be greater than the energy delivered to the

material by the primary electron. That way energy is conserved. After going

through this loop as many times as possible any "left over" energy will be

considered to be absorbed by the crystal lattice, again conserving energy.

The distribution function that will be used to assign secondary energies is from
the best fit to G. A. Rezvani's data on secondary energy:

f(Es) = A(Es^0.5)exp[-(Es/Eo)^2] (2)
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c A random number will be chosen and will be associated with the integral of the
c distribution function from zero to some Es, which is normalized for energies
c between 0 and some [Emax]. Once this area is known, a call to "FIND_ENERGY"
c will give the value of Es(I). If Es(I) doesn't satisfy equation (1), Ep is considered
c to be exhausted.

subroutine secenergy(l,EavaiI,Eg,Ki,Wf,Npos,Es,Nact)

real Eavail, Eg, Ki, Wf, Eo, Es(30)
real dlEmax, Emax, rarea
integer Npos, Nact

C

c calculate Es and the actual_yield
c

Nact = 0
Eo = Eg + Ki +Wf

c

end do
return
end

C----"

dlEmax = Eavail + Ki + Wf

if (npos .gt. 30) npos=30
do i=1 ,npos

Emax = dlEmax - Eo

! The magnitude of the surlace barrier. For
! insulators, Eo is the sum Eg + Ki. For metals,
! Eo is just the work function.

! The maximum energy deliverable to
! interactions with the secondaries.

! The total possible energy the secondary
! under consideration can have.

if(Emax.lt.0)return PThere is not enough energy to get
! another secondary past the surface barrier.

rarea = ran(I)
call find_energy(rarea, Ernax, Es(i))

dlEmax = Emax - Es(I)

Nact = i

! The total deliverable energy less the amount
! delivered to the secondary being considered.
! An actual secondary has been observed.

end of secenergy ...................

C w-

c subroutine FIND_ENERGY
C

c This routine selects an energy for the secondary in accordance with
c the distribution function described in the text.

C

subroutine find_energy(proba,Emax,eng).

real proba,Emax,eng
common/energy/AREAeng(3001),VALUEeng(3001)
common/energy2/AREAeng2(1001 ),VALUEeng2(1001)

48
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probal=proba
if (Emax .It. 30.0) then

j=int(Emax°100)+1
Pmax=AR EAeng(j)+(Emax-VALUEeng(j))*(AREAeng(j+l )

-AR EAeng(j))/(VALU Eeng(j+l )-VALUEeng(j))

probal =proba 1* Pmax
end if

&

index=int(probal *1000)+1
eng=VALU Eeng2(index)+(probal -AREAeng2(index))J( VALUEeng2(index+l )

_VALU Eeng2(index))/(AREAeng2(index+l )-AREAeng2(index))

return
end

c ......................... end of find energy ..............

:::::::::::::::::::::::::

c subroutine FIND_THETA

c
c This routine selects a value of ,hera for the secondary electron.

c
subroutine f ind._theta(proba,angler)

common/angle/AREAthe(501),VALUEthe(501 )

&

C_ ......

• * 1index= nt(500.0 proba)+

angler=VALUEthe(mdex)+(proba-AREAthe(mdex)) (VALUEthe(mdex+)
_VAL U Ethe(index))/(AR EAthe(index+l)-AR EAthe(index))

return

end
................... end of find_theta ...... = ......................

c sub_utine YIELDMAX

c

c

c

c

c
c

c

C .....

c

c

This program will make use of the angular modified Haffner formula:

Yield(E) -- C[EXP(-aE) - EXP(-bE)]*EXP(1 - COS(THETA))

to calculate the secondary electron [YIELD] as a function of the primary electron

[ENERGY] and angle of incidence [THETA].

subroutine yield max(a,b,c,energy,t heta,yield)

real yield,energy,c,a,b,theta

energy = energy/1000 ! convert Ep from eV's to keV's

aterm = exp(1-cos(theta))
yield = c * ((exp(-a * energy))-(exp(-b *energy))) * aterm

energy = energy * 1000 ! convert Ep back to eV's
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return
end

c......................... end ot yieldmax .............................

C==._..__.===._..===_=_=_= __.==_=._.__._.======_=___===_=_=._-==_---==_======_---_- .....

c subroutine ELASREF
c
c This routine will take an empirical formula fit to G. A. Rezvani's simulation data for
c elastic reflection of the primary electron at a broad number of energies between
c 1.0 and 50.0 eV. Since the result of the equation is always a traction and since the
c primary must rellect or not reflect on an all or nothing basis, we will add a random
c traction to the result of the formula, take the integer part and truncate it to an
c integer. If the result of this proceedure is one, we consider the primary electron to
c have suffered elastic reflection. If the result is zero, there is no reflection.
C_ =_= _==__._ _=_.._ __ _-_ ___.= _=_ _= = = _.-m-_ _=_ _ _= ==_-_= _'_-_ _ _ _ = = ....

C

subroutine elasref(I,Ep,reflect)

C

real Ep
integer I,i,ichance

logical reflect
reflect = .raise.

a = 0.40
B = 0.70
c=8.1
d=2.0

! These are from a fit to Rezvani's data
! for Ep equal to or less than 17 eV.

ff(Ep. It. 16.88)t hen
y = a* (eP**b) * exp(-(eP/c)**d)

else
y = 0.06 ! At.higher energies, Rezvani's data llatten out.

end if

ichance = int(y + ran(I))
if(ichance.gt.0) reflect = .true.

! The chance to reflect

return
end

c......................... end of elasref ..............................
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